AFRL/NASA Flywheel Program Overview

14 Mar 02

Glenn Research Center

Dr. Jerry L. Fausz
Program Manager
Space Vehicles Directorate
Air Force Research Laboratory

- ✓ Introductory remarks
- Technical challenges
- Dual use objectives
- AFRL/NASA Program
 - System developments
 - Government facilities
 - Base R&T
- Concluding Remarks

Flywheel Anatomy 101

Flywheel:

A device that stores energy in the form of kinetic (rotating) mass and delivers electrical energy on demand.

Rotor:

high strength, long life lightweight carbon fiber composite; shaft-hub-rim assembly

Motor/Generator:

High speed, high efficiency non-contact DC motor

Associated Electronics:

motor/generator drive, magnetic bearing controller, ACS interface

Magnetic Bearings:

high flux, efficient two sets - upper/lower

Enclosure:

lightweight aluminum to ensure vacuum; provides spacecraft mechanical and thermal interface

Touchdown Bearings:

High speed, high impact, mechanical ball bearings

Flywheel Energy Systems

Flywheel Energy Storage (FES)

- 2 counter-rotated flywheels
- Energy storage
- Replace some Power Management & Distribution (PMAD)

Integrated Power & Attitude Control System (IPACS)

- Array of \geq 2 FWs
- Energy storage & Attitude control torque
- Replace some PMAD

Flywheel Attitude Control, Energy Transmission & Storage (FACETS)

 System Level – Full 3-axis Attitude Control with Simultaneous Energy Storage

- Introductory remarks
- ✓ Flywheel Program challenges
- Dual use objectives
- AFRL/NASA Program
 - System developments
 - Government facilities
 - Base R&T
- Concluding Remarks

Technical Challenges

Flywheel systems represent a highly multi-disciplinary challenge

Magnetic Bearings:

- Base motion: gimbaling
- Disturbance rejection
- Reduce Losses

Rotor:

- SAFETY
- Rotor Safe Life characterization
- Material systems & rotor structures for high specific energy
- Health monitoring/ fault recovery

System Level:

- Simultaneous energy storage & attitude control
- System level efficiency
- CMG mode attitude control with variable speed momentum wheels

Programmatic Challenges

Development

- Bus technology: Low priority
- Simultaneous AC & ES control

Demonstration

- Modeling and simulation: Simultaneous control
- Safety

Transition

- Revolutionary: "we've never flown one before"
- Pervasive: Challenge to user confidence

- Introductory remarks
- Flywheel Program challenges
- ✓ Dual use objectives
- AFRL/NASA Program
 - System developments
 - Government facilities
 - Base R&T
- Concluding Remarks

Potential Flywheel Applications/Markets

Commercial Satellite Industry Growth

Real World, Dual-Use Examples

Flywheel Powered Tram

- Peak power
- In service (Bristol)

Beacon Power/Cox Cable

- UPS
- \$XXM Contract

"Incredible Hulk" Roller Coaster

- Peak power/Load leveling
- 0-40 in 2 sec (6000 Amps)
- 4 10,000 lb flywheels

- Introductory remarks
- Flywheel Program challenges
- Dual use objectives
- **✓ AFRL/NASA Program**
 - System developments
 - Government facilities
 - Base R&T
- Concluding Remarks

AF/NASA Technical Approach

- Develop advanced aerospace flywheel component and system technologies to meet AF & NASA long term mission needs
 - Energy Storage
 - Integrated Power and Attitude Control
 - Power Peaking & Pulse Power
- Near term technology focus on
 - "Millenium" class, >1kW-h, for large satellites
 - "Century" class flywheels, 300-700 W-h capacity, for mid-sized satellites
- Longer term development of flywheels, < 100WHr capacity, for small satellite applications
- Demonstrate flywheel technology goals
 - System Specific Energy (usable) > 50 W-h/Kg (within 5 years), > 200 WHr/Kg long term
 - Conventional Momentum Storage capability at Min. speed (>2x at Max. speed)
 - Cycle Life > 75,000
 - Round Trip efficiency > 90%
 - System Cost Reductions > 25%

National Aerospace Flywheel Program Players

AF/NASA Flywheel Technology Program

- Introductory remarks
- Flywheel Program challenges
- Dual use objectives
- > AFRL/NASA Program
 - **✓** System developments
 - Government facilities
 - Base R&T
- Concluding Remarks

AF System Level Development

Integrated Power and Attitude Control System (IPACS)
Development

- IPACS testing (Honeywell)
- Flywheel Rotor Safe-Life Program (NASA/Aerospace)
- Magnetic bearing control research (Ga Tech/Va Tech)
- Rotordynamics (Auburn)

- Simultaneous attitude and charge/discharge control
- Solid modeling of IPACS (Honeywell)
- System level simulation

Flywheel Attitude
Control, Energy
Transmission &
Storage (FACETS)
Development

Agile Multi-Purpose Satellite Simulator (AMPSS) Integrated Demonstration

- FEM/Solid modeling of structural test-bed (Boeing SVS/CSA)
- System level mathematical and HWIL simulation (Boeing SVS)
- FACETS HW integration

NASA System Level Development

Flywheel Energy Storage Systems (FESS)

- Develop Flywheel Battery Prototype for ISS by 2006
- FESS cancelled at the end of FY01 due to
 ISS Program budget constraints
- Flywheel Module IDR (Pre-CDR maturity)
 Completed in September, 2001 at UT-CEM

Flywheel Express Pallet Experiment, FEPE, Proposed to NASA HQ as Follow-on Effort for FY03 Start

- Build on FESS Hardware Development
- Modules re-sized to 650 WHr each
- Modules counter-rotate and re-circulate power with make-up from ISS
 - Demonstrate technology issues for ISS application

AFRL Agile Multi-Purpose Satellite Simulator (AMPSS)

ASTREX

- Structure: 1/3 1/2 scale beam expander based on SBL concept (graphite/epoxy)
- Spherical Air Bearing
 - Load capacity: 14,500 lb (air pressure dependent)
 - ±20° Pitch and Roll, ±180° Yaw
- "Smart Structure" with embedded piezoceramic sensors/actuators for structural vibration control

Optical ATP

- Optics: Table-top demonstration
- To be tested in coordination with attitude control (flywheels / cmgs) on ASTREX for ATP function

- Introductory remarks
- Flywheel Program challenges
- Dual use objectives
- > AFRL/NASA Program
 - System developments
 - **✓** Government facilities
 - Base R&T
- Concluding Remarks

NASA Flywheel Testbed

Objective Enable system level demonstrations of advanced technologies

- Test Capabilities
 - -Low Energy Flywheel Facility (LEFF) - single units, < 350 whr</p>
 - High Energy Flywheel Facility (HEFF) –multiple units on air table, < 700 whr, < 540 Kgs

• Status

- **—LEFF Operational**
- HEFF 90% Complete,Operational in 2002
- Conduct two-unit torque and power testing on mag bearings in HEFF thru 2003

Control Room

LEFF

HEFF

- Introductory remarks
- Flywheel Program challenges
- Dual use objectives
- > AFRL/NASA Program
 - System developments
 - Government facilities
 - **✓** Base R&T
- Concluding Remarks

Base R&T - Rotor

Multi-directional Composite Rotor Development

(Auburn Univ., CCDS Cooperative Agreement – NASA)

Optimal Rotor Design/Manufacturing Optimal distribution of material properties (Think Composites, SBIR/in-house – AFRL)

Integrated Composite Arbor and Flywheel Rim Technology Development

Development, proof and cyclic tests of high tip speed rotors (Univ. of Texas, Center for Electromechanics, NRA – NASA)

Characterization & Control of Internal Material Damping in Composite Rotors

(Auburn Univ., NRC Summer Faculty Fellowship – AFRL)

Flywheel Rotor Safety/Longevity Program

- Flywheel Rotor Safety/Longevity Working Group
 - Co-Sponsored by NASA and AFRL and chaired by Aerospace Corporation, Mr. Jim Chang
 - Three Working Group meeting have been held (June and December 2001 and March 2002)
 - Draft of Rotor Certification Standard in review
- Material Characterization and Life Prediction
 - Preliminary results reported at ASTM Symposium
 - Task on hold until FY03
- Rotor Cyclic Fatigue Testing
 - FESS Control Rotor testing initiated in FY01
 - Facility failures have slowed progress
 - Facility repairs complete and operational checkouts are in progress
 - Testing of UT-CEM PLM rotor and FESS control rotor to be completed in FY02
 - Cycling of FESI IPACS rotor continues

Base R&T - Bearings

Low/Zero Bias Magnetic Bearing Control

Applied Advanced Nonlinear Control (Georgia Tech, AFOSR – AFRL)

Low-loss, fail-safe magnetic suspension for flywheels

Fault-tolerant bearings; hybrid controls; bearing design tool; expert system for health monitoring (Texas A&M, CCDS Cooperative Agreement – NASA)

Magnetic Bearing Control in the Presence of Base Motion (VirginiaTech, AFOSR – AFRL)

Advanced Flywheel Materials Development for High Specific Energy

Develop high-strength materials for flywheel magnetics (UT-CEM, NRA – NASA)

Stator-controlled Magnetic Bearing Development
Revolutionary Magnetic Bearing Concept (MITI, Phase II SBIR – AFRL)

Flywheel Energy Storage Systems for Small and Medium Spacecraft

Develop high-speed passive radial bearing system (Foster-Miller, Phase II SBIR – NASA)

Novel Damping Concepts for Mechanical Backup Bearings and Passive Magnetically Suspended Rotors (Univ. of Toledo, NRA – NASA)

Computational Tracking of Dynamic States / Disturbances in Rotating Machinery Observer-based magnetic bearing control using extended Kalman filter approach (NASA)²⁵

Base R&T - System

Coordinate Momentum and Energy Transfer (COMET™)

3-DOF System Demonstration in NASA HEFF (LMCO-CPC, NRA – NASA)

Simultaneous Energy Storage & Attitude Control

Collaborative control algorithm development (Air Force Academy, Ga Tech EPA – AFRL)

Flywheel Technology Development for Small Satellites

Develop high-speed motor & drive for open core flywheel system (Penn State, NRA – NASA)

New Concepts in Low Cost, Higher Reliability and Less Complex Flywheel Systems

Basic research in passive bearings and inside-out flywheel configurations (NASA)

- Introductory remarks
- Flywheel Program challenges
- Dual use objectives
- AFRL/NASA Program
 - System developments
 - Government facilities
 - Base R&T
- **✓ Concluding Remarks**

Summary

Conclusions

- AF/NASA Aerospace Flywheel Program has faced significant challenges (and some triumphs)
- Now more robust than ever
 - Focus on risk reduction and potential users
 - Highly leveraged
 - Multi-disciplinary (govt/industry/academia) cooperative effort
- Future is bright
 - Pushing forward with system level demonstration (AMPSS, LEFF, HEFF)
 - Maintaining critical base R&T efforts
- We will make it happen FLIGHT DEMONSTRATION